
building small stateless network-controlled
appliances with coreboot/linuxboot

and u-root’s cpu command

+ =

Ron Minnich, Google

Based on the u-root project (u-root.org)
● Unix commands in Go
● Source-to-source transformation “busybox”
● Any command can be in our “busybox”

○ Very different from all other Go “busybox”

● E.g. github.com/nsf/godit (Emacs)
● Works across Linux, BSD, Plan 9
● How can that fit in 4MiB FLASH part?
● “Go binaries are big!”

“Go binaries are big” -- not always
● Note the big first jump
● Flattens out fast
● More commands -> more packages
● Each new command brings less new

○ E.g. hdparm adds 6KiB

● The bottom red line deployed in
Google data centers

● Typical install is 3M initramfs
● But why? Why not C?
● Because the most recent C exploit is

… today (“sudo exploit”)

Quick demo

Cpu: where ever you go, there your namespace is
● Type a command that looks like an ssh
● Unlike ssh all your local resources (namespace) visible on remote machine
● Commands, files, everything
● Looks like NFS home directories/NFS root but:
● The mount name space on remote node is private
● Served by your server, not a sysadmin-managed server
● In this demo, linuxboot/cpud is the coreboot payload on the apu2
● Apu2 comes up and only knows how to function as a cpu server
● Plan 9 hackers everywhere rejoice!

Demo hell

Local node (Client)
cpu 192.168.0.1 ls /bin

Remote node (Server)
cpud is /init

Start 9p server
Forwarding goroutine

9p server
connect(remote) accept(remote)

Set up redir

Accept redir

Mount 9p on /tmp/cpu

Start listen on 9p port
forward

Bind mount:
/tmp/cpu/usr on /usr
/tmp/cpu/*bin on /*bin
/tmp/cpu/home on /home
/tmp/cpu/etc on /etc9p packet

forwarder

exec(command, …)

Normal ssh stdio

cpud
listening on port 23

There’s a bit of a trick in that mount step
● On Plan 9, cpu forwards client name space in the environment
● Name space describes the set of mounts

○ Mounts are not privileged in Plan 9 and are process-private (and inherited)
○ You may have seen CLONE_NEWNS in man 2 clone
○ Al Viro (Plan 9 fan) brought that in to Linux ca 1999

● One element of the name space is factotum, connection to auth server
● This allows the new process on cpu server to authenticate to other servers
● Other elements describe mounts of file servers

Typical plan 9 namespace
● bind /root /root
● mount -aC '#s/boot' /root
● bind / /
● ...
● mount -a '#s/factotum' /mnt
● ...
● mount -a '#s/cs' /net
● bind -a /bin/disk /bin
● mount -a '#s/dns' /net
● cd /usr/harvey

Plan 9 recreation of name spaces

auth server

file server

file server

file server

DNS server

CPU client CPU server

Not an option on Linux!
● No widely accepted auth, naming infra

○ We tried to set this up on the 9grid in the 2000s but proved impossible
○ Ipfs, perkeep are trying but not really there; upspin has it, but no users
○ Gdrive comes very, very close but … not quite there

● Linux/Unix users have moved from network file system (1990s) to local!
○ “NFS” largely a way to backup and share files
○ This is a really strange backwards evolution driven by laptops among other things
○ Chromebooks changed the dynamic a bit, but are moving back to local (“offline docs”)

● How did we get here?

Resource sharing vs. remote access

Sharing name spaces on Linux
● But my laptop/workstation are not file servers!
● Comms issue: what transport?
● What to do?

Only option is to have the cpu client become a 9p server
● Fortunately, this is “easy”
● Chris Koch wrote a beautiful Go 9p server for Gvisor
● We have had an sshd in u-root for several years
● Just a simple matter of programming
● How do we plumb it up?

V1: cpu client exports 9p service on socket
● Client gets 9p server socket
● Communicates that host:port to cpu

server
● Server mounts /tmp/cpu via that socket
● Problem: do we make it a priv port?
● Problem: what if “bad guy” jumps in?
● Only allow one mount?
● Doesn’t help much: converts perpetual

hole into race condition
● This worked but was not enough

CPU client CPU server
192.168.0.1:3334

CPU client CPU server
mount(“9p”,
“192.168.0.1/3334”,
“/tmp/cpu”, ...);

V2: mux 9p and ssh traffic, cpu server does mount
● Client sets up remote port forward

via sshd
● Server kicks off 9p forwarder

goroutine
● goroutine mounts /tmp/cpu via that

local socket
● Forwards 9p RPCs over ssh
● Better: not exposing client port, just

local port
● Really want that to be more private

CPU client CPU server
forward 127.1:abcd

CPU client CPU server

9p forwarder
mount(“9p”,
“127.1/abcd”,
“/tmp/cpu”, ...);

V3: mux 9p and ssh traffic, mount on fd
● Client sets up remote port forward
● Sends CPUNONCE as 32-byte string
● 9p goroutine creates a socketpair
● Once mounted writes CPUNONCE

value back over socket
● 9p server in cpu client only accepts

this once
● And it must see the nonce first
● Based on how factotum works

CPU client CPU server
CPUNONCE=abcd.
..

CPU client CPU server

9p mount
mount(“9p”,
“rfdno=5,wfdno=6”,
“/tmp/cpu”, ...);

But how do we trust a cpud in the first place?
● For now, we just do
● But system transparency can provide more assurance

○ https://www.system-transparency.org/

● The idea being that we can have assurance that the entire stack up to and
including cpud is measured

● Very similar to what chromeos does with its stack
● Or our ideas on attestation
● Ssh trust issues apply to cpu

https://www.system-transparency.org/

Some cool things about Go
● One ssh package did port forward, another did key unwrapping
● Needed both
● Would have been a nightmare in C

 // ossh can unpack password-protected private keys.

 ossh "golang.org/x/crypto/ssh"

 "github.com/gliderlabs/ssh"

● Refer to ossh or ssh
● I know it’s just namespacing, but it’s more convenient than C++ for me

Other details
● I’ve built NERF images that only have a cpud

○ From HPC days: one daemon, one kernel, in flash

● Next step is to create such images coupled with system transparency
● Minimal bare metal image
● That we can mistrust less
● Provides all resources to the programs running
● This is how HPC systems have been structured for a long time
● Also has similarities to facebook’s approach
● And where I wish most people’s stacks would go

Cpud mounts 9p on /tmp/cpu
● Cpud unshares its mount points
● Does a private mount of tmpfs on /tmp
● Hence, the /tmp/cpu mount is always private
● Is that all we need?
● Can we say PATH=/tmp/cpu/bin:blah HOME=/tmp/cpu/.. Etc?
● Sadly, not
● Too many built-in assumptions in glibc/various distros
● In addition to the mount, need bind mounts

Final namespace
none on /tmp type tmpfs (rw,relatime)

127.0.0.1 on /tmp/cpu type 9p
(rw,nosuid,nodev,relatime,sync,dirsync,uname=rminnich,access=client,msize=65536,trans=fd,rfd=9,wfd=9

127.0.0.1 on /lib type 9p (...)

127.0.0.1 on /lib64 type 9p (...)

127.0.0.1 on /usr type 9p (...)

127.0.0.1 on /bin type 9p (...)

127.0.0.1 on /etc type 9p (...)

127.0.0.1 on /home type 9p (...)

Heterogeneity: connect to ARM cpud from x86
● In Plan 9 world, all binaries for all architectures are present on all machines
● Rooted at, e.g., /amd64, /sparc, /arm, etc.
● Can transmit namespace via namespace switch

○ Once it’s implemented :-)

● Default namespace:
○ "/lib:/lib64:/lib32:/usr:/bin:/etc:/home"

● ARM namespace:
○ "/arm64/lib:etc.etc.:/home"

● Also, on machines that have full bin
○ "/home”

● Or serve from a cpio!

Next step: convert programs to packages
● The basic cpu code is right
● Client is 700LOC (includes server)
● Server is 450 LOC
● These need to be converted to packages
● Then the fun part
● Vcpu -- vector cpu
● One cpu client, large number of servers
● Handy for test racks
● Another thing we did in HPC

CPU in HPC

CPU in HPC
● Plan 9 on Blue Gene
● Mail files on a server in Texas somewhere
● Binary on another Plan 9 system
● So:
● cpu bgl
● import themailmachine /m/mail
● run the mail binary provided by NJ file server on the cpu session
● Voila: $100M mail reader
● The best part: we booted plan 9, and mail worked first time we tried it
● As a demo, during a talk, at a DOE conference
● The value of getting the foundation right

What it’s like to use cpu?
● It’s wonderful
● What drove me to finish it up: chipsec

○ Giant wad of python, files, etc.

● You can stop worrying about installing packages on remote systems
● All the commands you have are available to you
● You can forget about distros
● All the distros you have are there for you
● You can forget about needing scp:

○ cpu a flashrom -w somefile etc. etc.

Building systems with cpu images
github.com/linuxboot/mainboards

OSFC slack workspace, u-root channel, see u-root.org

I’m happy to help

