building small stateless network-controlled
appliances with coreboot/linuxboot
and u-root’s cpu command

Ron Minnich, Google

Based on the u-root project (u-root.org)

e Unix commands in Go
Source-to-source transformation “busybox’

Any command can be in our “busybox”
o Very different from all other Go “busybox”

E.g. github.com/nsf/godit (Emacs)
Works across Linux, BSD, Plan 9
How can that fit in 4MiB FLASH part?

“Go binaries are big!”

“Go binaries are big” -- not always

Note the big first jump
Size of u-root image vs. # of commands. Note: source mode includes Go toolchain
Flattens out fast and required Go and u-root packages)

More commands -> more packages s

Each new command brings less new ...
o E.g. hdparm adds 6KiB

e The bottom red line deployed in
Google data centers

3.00E+7

2.00E+7

e Typical install is 3M initramfs F_,_/r

e But why? Why not C? P

25 50 75 100 125

e Because the most recent C exploit is
... today (“sudo exploit”)

Cpu: where ever you go, there your namespace is

Type a command that looks like an ssh

Unlike ssh all your local resources (namespace) visible on remote machine
Commands, files, everything

Looks like NFS home directories/NFS root but:

The mount name space on remote node is private

Served by your server, not a sysadmin-managed server

In this demo, linuxboot/cpud is the coreboot payload on the apu2

Apu2 comes up and only knows how to function as a cpu server

Plan 9 hackers everywhere rejoice!

Demo hell

Local node (Client)
cpu 192.168.0.1 Is /bin

Remote node (Server)
cpud is /init

Start 9p server
Forwarding goroutine

cpud
listening on port 23

connect(remote)

accept(remote)

9p server

Start listen on 9p port
forward

Accept redir

Set up redir

Mount 9p on /tmp/cpu

Normal ssh stdio

9p packet
forwarder

Bind mount:
/tmp/cpu/usr on /usr
/tmp/cpu/*bin on /*bin
/tmp/cpu/home on /home
/tmp/cpu/etc on /etc

exec(command, ...)

There’s a bit of a trick in that mount step

e On Plan 9, cpu forwards client name space in the environment

e Name space describes the set of mounts

o Mounts are not privileged in Plan 9 and are process-private (and inherited)
o You may have seen CLONE_NEWNS in man 2 clone
o Al Viro (Plan 9 fan) brought that in to Linux ca 1999

e One element of the name space is factotum, connection to auth server
e This allows the new process on cpu server to authenticate to other servers
e Other elements describe mounts of file servers

Typical plan 9 namespace

bind /root /root
mount -aC '#s/boot' /root
bind //

mount -a '#s/factotum' /mnt

mount -a '#s/cs' /net
bind -a /bin/disk /bin
mount -a '#s/dns' /net
cd /usr/harvey

Plan 9 recreation of name spaces

CPU client CPU server

auth server

file server

file server

file server

DNS server

Not an option on Linux!

e No widely accepted auth, naming infra
o We tried to set this up on the 9grid in the 2000s but proved impossible
o lpfs, perkeep are trying but not really there; upspin has it, but no users
o Gdrive comes very, very close but ... not quite there
e Linux/Unix users have moved from network file system (1990s) to local!
o “NFS” largely a way to backup and share files
o This is a really strange backwards evolution driven by laptops among other things
o Chromebooks changed the dynamic a bit, but are moving back to local (“offline docs”)

e How did we get here?

Resource sharing vs. remote access

The Elements of
Networking Style

AND OTHIR ESSAYS & ANIMAOVIRSIONS ON
THE ART OF INTERCOMPUTER NETWORKING

22BN
'VM-
\g A% ’.
h. n& w -r;.‘
N AT
| s
(,-'!',;1' =N ,
‘a& _.-?3
- O l\n £

Sharing name spaces on Linux

But my laptop/workstation are not file servers!

Comms issue: what transport?

What to do?

Only option is to have the cpu client become a 9p server
Fortunately, this is “easy”

Chris Koch wrote a beautiful Go 9p server for Gvisor
We have had an sshd in u-root for several years

Just a simple matter of programming

How do we plumb it up?

V1: cpu client exports 9p service on socket

192.168.0.1:3334

Client gets 9p server socket CPU client
Communicates that host:port to cpu
server CPU client

mount(“9p”,

- CPU server

Server mounts /tmp/cpu via that socket
Problem: do we make it a priv port?
Problem: what if “bad guy” jumps in?
Only allow one mount?

Doesn’t help much: converts perpetual
hole into race condition

This worked but was not enough

“192.168.0.1/3334",

“tmp/cpu’, ...);

CPU server

V2: mux 9p and ssh traffic, cpu server does mount

: f d 127.1:abcd
Client sets up remote port forward CPU client ot P .| CPU server
via sshd
Server kicks off 9p forwarder CPU client CPU server
goroutine

,) mount(“9p”,
goroutine mounts /tmp/cpu via that “127 1/abcd”, | 9p forwarder
local socket “tmp/cpu’, ...);

Forwards 9p RPCs over ssh

Better: not exposing client port, just
local port

Really want that to be more private

V3: mux 9p and ssh traffic, mount on fd

Client sets up remote port forward
Sends CPUNONCE as 32-byte string
9p goroutine creates a socketpair
Once mounted writes CPUNONCE
value back over socket

Op server in cpu client only accepts
this once

And it must see the nonce first
Based on how factotum works

CPU client

CPU client

CPUNONCE=abcd.

- CPU server

mount(“9p”,
“rfdno=5,wfdno=6",
“tmpl/cpu’, ...);

CPU server

9p mount

But how do we trust a cpud in the first place?

e For now, we just do

e But system transparency can provide more assurance
o https://www.system-transparency.org/

e The idea being that we can have assurance that the entire stack up to and
including cpud is measured

e \ery similar to what chromeos does with its stack

e Or our ideas on attestation

e Ssh trust issues apply to cpu

https://www.system-transparency.org/

Some cool things about Go

e One ssh package did port forward, another did key unwrapping
e Needed both
e \Would have been a nightmare in C

// ossh can unpack password-protected private keys.
ossh '"golang.org/x/crypto/ssh"
"github.com/gliderlabs/ssh"

e Refer to ossh or ssh
e | know it’s just namespacing, but it's more convenient than C++ for me

Other details

e [|'ve built NERF images that only have a cpud

o From HPC days: one daemon, one kernel, in flash
Next step is to create such images coupled with system transparency
Minimal bare metal image
That we can mistrust less
Provides all resources to the programs running
This is how HPC systems have been structured for a long time
Also has similarities to facebook’s approach
And where | wish most people’s stacks would go

Cpud mounts 9p on /tmp/cpu

Cpud unshares its mount points

Does a private mount of tmpfs on /tmp

Hence, the /tmp/cpu mount is always private

Is that all we need?

Can we say PATH=/tmp/cpu/bin:blah HOME=/tmp/cpu/.. Etc?
Sadly, not

Too many built-in assumptions in glibc/various distros

In addition to the mount, need bind mounts

Final namespace

none on /tmp type tmpfs (rw,relatime)

127.0.0.1 on /tmp/cpu type 9p
(rw,nosuid,nodev,relatime,sync,dirsync,uname=rminnich,access=client,msize=65536,trans=fd,rfd=9,wfd=9

127.0.0.1 on /lib type 9p (...)
127.0.0.1 on /lib64 type 9p (...)
127.0.0.1 on /usr type 9p (...)
127.0.0.1 on /bin type 9p (...)
127.0.0.1 on /etc type 9p (...)

127.0.0.1 on /home type 9p (...)

Heterogeneity: connect to ARM cpud from x86

e In Plan 9 world, all binaries for all architectures are present on all machines
e Rooted at, e.g., /lamd64, /sparc, /arm, etc.

e Can transmit namespace via namespace switch
o Once it's implemented :-)

e Default namespace:
"/lib:/lib64:/lib32:/usr:/bin:/etc:/home"

e ARM namespace:
"larm64/lib:etc.etc.:/home"

e Also, on machines that have full bin
"lhome”

e Or serve from a cpio!

Next step: convert programs to packages

The basic cpu code is right

Client is 700LOC (includes server)
Server is 450 LOC

These need to be converted to packages
Then the fun part

Vcpu -- vector cpu

One cpu client, large number of servers
Handy for test racks

Another thing we did in HPC

CPU in HPC

CPU in HPC

Plan 9 on Blue Gene

Mail files on a server in Texas somewhere

Binary on another Plan 9 system

So:

cpu bgl

import themailmachine /m/mail

run the mail binary provided by NJ file server on the cpu session
Voila: $100M mail reader

The best part: we booted plan 9, and mail worked first time we tried it
As a demo, during a talk, at a DOE conference

The value of getting the foundation right

What it’'s like to use cpu?

It's wonderful

What drove me to finish it up: chipsec
o Giant wad of python, files, etc.

You can stop worrying about installing packages on remote systems
All the commands you have are available to you

You can forget about distros

All the distros you have are there for you

You can forget about needing scp:
o cpu a flashrom -w somefile etc. etc.

Building systems with cpu images
github.com/linuxboot/mainboards

OSFC slack workspace, u-root channel, see u-root.org

I’'m happy to help

